Music
"This goes way beyond an inability to carry a tune," observes psychologist Isabelle Peretz of the University of Montreal. "They can't dance, and they can't tell the difference between consonance [harmony] and dissonance either. They all appear to have been born without the wiring necessary to process music." Intriguingly, people with amusia show no overt signs of brain damage or short-term-memory impairment, and magnetic-resonance-imaging scans of their brains look normal.
There is evidently no way to help these unfortunate folks (though, admittedly, they don't know what they're missing). But for instrumentalists, at least, music can evidently trigger physical changes in the brain's wiring. By measuring faint magnetic fields emitted by the brains of professional musicians, a team led by Christo Pantev of the University of Muenster's Institute of Experimental Audiology in Germany has shown that intensive practice of an instrument leads to discernible enlargement of parts of the cerebral cortex, the layer of gray matter most closely associated with higher brain function.
As for music's emotional impact, there is some indication that music can affect levels of various hormones, including cortisol (involved in arousal and stress), testosterone (aggression and arousal) and oxytocin (nurturing behavior) as well as trigger release of the natural opiates known as endorphins. Using PET scanners, Zatorre has shown that the parts of the brain involved in processing emotion seem to light up with activity when a subject hears music.
As tantalizing as these bits of research are, they barely begin to address the mysteries of music and the brain, including the deepest question of all: Why do we appreciate music? Did our musical ancestors have an evolutionary edge over their tin-eared fellows? Or is music, as M.I.T. neuroscientist Steven Pinker asserts, just "auditory cheesecake," with no biological value? Given music's central role in most of our lives, it's time that scientists found the answers.