Sort:  

The rate of change of an exponential is not constant. But there is a linear relation between its derivative (=rate of change) and the actual function. Or more explicitely d(et)/dt=et , so when you take the derivative you get the same function back. Just like when you take the function y=x insert a number for x then the output, y, is equal to x. But in the case of the exponent the function in the previous example gets swapped with the derivative.

I think I should make it a project of mine to develop a good understanding of the basics of calculus. I have read a little bit about the history of its development, stretches over a really long period of human history. I have done a lot of statistics, but very weak in other areas. Thanks very much for the great explanation

Coin Marketplace

STEEM 0.21
TRX 0.25
JST 0.037
BTC 104267.21
ETH 3245.51
SBD 4.24