Libro: "Triada de la Aproximación en el Cálculo Diferencial e Integral" | Una meta alcanzada
Iniciemos mostrando el Índice General del Libro
Euclides de Alejandría (325AC - 265AC) precisa en su obra Elementos, los pasos que involucran la aplicación del límite y desarrolla el método de exhaución consistente en doblar el número de lados de los polígonos regulares inscritos y circunscritos hasta la convergencia del procedimiento. Arquímedes reúne y desarrolla estos resultados y muestra que los perímetros de los polígonos dentro del círculo deben ser más cortos que el círculo, mientras que los de fuera del círculo deben ser más largos que el círculo. Para hacer el cálculo Arquímedes construyó sus polígonos bisecando repetidamente los lados de un hexágono regular para obtener polígonos regulares con 12 lados, 24, 48 y así sucesivamente, los resultado fueron entre 223/71=3,14084 y 22/7= 3,14285.
Georg Von Purbach (1423 - 1461) asume que π =377/120=3.1466 . . . y fue con el desarrollo de la trigonometría a partir del siglo XV con las investigaciones de Adrien Romain (1561- 1615) y Ludolph de Colonia (1539 - 1610) que se obtienen 15 y 32 cifras.
Con el cómputo de π hecho por el matemático inglés William Shanks (1812 - 1882) en 1853 se obtuvo 707 cifras pero cometió un error en el 528o decimal. En 1949 John Von Neumann (1903 - 1957) con ayuda del ordenador presenta unas 2.037 cifras y con David H. Bailey (1948) se extrajo 29.360.000 cifras.
Cuántas cifras son necesarias y suficientes para una apropiada precisión, cuánto basta para medir el diámetro de una fibra óptica, el espesor aproximado de un vaso capilar cerebral o la longitud de una circunferencia que tenga por radio la distancia media de la tierra al sol o más allá, del sol a la nebulosa más lejana; entonces ¿quá necesidad obliga buscar tantas cifras? quizás la necesidad práctica y nunca la resignación a la limitación numérica.
Anticipándose a Isaac Newton (1643 - 1727) y Gottfried Withelm Leibniz (1646 - 1716) Arquímedes de Siracusa (ca 287 - 212 AC ) halla el área de una región debajo de una parábola mediante la suma de los rectángulos producto de la subdivisión en bandas paralelas de igual ancho, tantas como sean posibles a fin de reducir al máximo la exclusión del extremo curvado el cual fue el proceso base para la denominada Integral. Newton hace frente a esta nueva visión de las matemáticas construyendo métodos para calcular áreas y trazar tangentes a curvas que son esencialmente los problemas claves en el Cálculo Diferencial y su estrecha relación con el Cálculo Integral.
El Cálculo Diferencial considera un tópico de suma importancia para las matemáticas, las ecuaciones diferenciales, originarias de la necesidad de modelar sistemas naturales estas irrumpen en modernos campos de la mecánica, astronomía, óptica, medicina y economía entre otros.
De la mano con la complejidad y formalidad que ha representado el estudio de los métodos numéricos y el compromiso académico que ello rige, se abre paso a la intención de un aprendizaje significativo en situaciones donde se desea estudiar e interpretar los efectos que originen cambios en las variables o constantes en funciones de variable real con el uso de la herramienta gráfica y de cálculo Mathematica, en esta oportunidad se usará como asistente para graficar funciones y familias de funciones que manualmente sería una ardua tarea, facilitar el cálculo con alta precisión, hacer cambios en los parámetros generales para estudiar el comportamiento de los resultados y aportar soluciones numéricas y gráficas.
La intención es reconocer lo que el aporte académico y bibliográfico especializado nos ha consolidado, y manipular esas contribuciones en un ambiente de laboratorio de matemáticas donde profesor y estudiante experimenten de manera interactiva, cooperativa y agradable, ideas, conceptos y fundamentos matemáticos.
En general se pretende exponer el comportamiento gráfico y numérico como elementos fundamentales para la comprensión y estudio de la interpolación, la integral y las ecuaciones diferenciales ordinarias.
Este texto, fue editado por Editorial Académica Española. Quiero aprovechar también la oportunidad para agradecer al Prof. Omar Cordero, por haberme permitido compartir tan bonito trabajo conmigo. A todos mis más sinceras palabras de agradecimiento.
Este texto lo pueden encontrar en el siguiente enlace: Triada de la Aproximación en el Cálculo Diferencial e Integral
Si te gusta nuestro contenido,ven y apoya a @Cervantes como Witness en
Congratulations! This post has been upvoted from the communal account, @minnowsupport, by abdulmath from the Minnow Support Project. It's a witness project run by aggroed, ausbitbank, teamsteem, someguy123, neoxian, followbtcnews, and netuoso. The goal is to help Steemit grow by supporting Minnows. Please find us at the Peace, Abundance, and Liberty Network (PALnet) Discord Channel. It's a completely public and open space to all members of the Steemit community who voluntarily choose to be there.
If you would like to delegate to the Minnow Support Project you can do so by clicking on the following links: 50SP, 100SP, 250SP, 500SP, 1000SP, 5000SP.
Be sure to leave at least 50SP undelegated on your account.
Que hermoso logro, mis sinceras felicitaciones el esfuerzo se ve recompensado y que se el primero de muchos.
Buena vibra.
¡# Felicidades, #proconocimiento te valoró!
Has sido reconocido(a) por tu buen post por el Comité de Arbitraje y Valoración del Proyecto Conocimiento @proconocimiento.
Apoyamos y valoramos tu esfuerzo...
Proyecto Conocimiento es parte de la comunidad @provenezuela la cual, gracias al apoyo de EOSVenezuela, pasa a la categoría de witness; obteniendo así un ascenso importante dentro de la comunidad hispana de Steemit.
Por ello, para que el voto de @provenezuela se haga efectivo en un post, éste deberá llevar las siguientes etiquetas: #provenezuela, #venezuela, #proconocimiento. Las otras dos deben ser escogidas de acuerdo al tema propio del post.
Próximamente te estaremos exigiendo tu suscripción a nuestro trail para poder optar a nuestro voto. Puedes suscribirte a través de la herramienta "SteemAuto".
Querido @abdulmath ... como decirte lo mucho que me alegra este logro, siempre te he dicho lo mucho que te admiro, aunque no domine el tema siempre le doy un vistazo a tus publicaciones y estoy pendiente de tus avances. Simplemente mereces este regalo y se que vendrán muchos mas, trabajas mucho para ello y lo mereces!!! Felicidades!!!