maind 8

in #pso6 years ago

Chapter 1
Sets and Functions
Exercise 1.1

  1. Write each of the following sets (i) in set builder form (ii) in listing its elements.
    (1) The set N of natural numbers.
    (2) The set J of all positive integers.
    (3) The set P of all prime numbers.
    (4) The set A of all positive integers that lie between 1 and 13.
    (5) The set B of real numbers which satisfy the equation 3x2 + 5x – 2 = 0.
  2. Choose a suitable description (a) of (b) or (c) in set builder form for the following sets.
    (1) E ={ 2, 4, 6, 8}
    (a) E = { x/ x is an even integer less than 10 }
    (b) E = { x/ x is an even positive integer less than 10 }
    (c) E = { x / x is positive integer, x< 10 and x is a multiple of 2}
    (2) F = { 3, 6,9, 12, 15 , …}
    (a) F = {x/ x is appositive integer that is divisible by 3}
    (b) F = {x/x is a multiple of 3}
    (c) F = {x/x is a natural number that is divisible by 3}
  3. A = {x/x2 + x – 6 } and B = { -3,2}. Is A = B?
  4. A = {x/x is prime number which is less than 10} and B = {x/x2 – 8x + 15 = 0}
    (a) Is A = B (b) Is B⊂ A?
  5. P = {x/x is an integer and -1 < x<3/5 }and Q = {x/x3 -3x2 + 2x = 0} . Is P = Q?
    6.L= {(x,y)/ x and y are positive integers and x + y = 7}.Write L by listing its elements.

Exercise 1.2
1.Draw the following intervals.
(a) {x/x > 2} (b) {x/x ≥ 3} (c) {x/x x ≤ -1} (d) {x/x>-1}
(e){x/-2≤ x≤ 2} (f) {x/0≤x≤ 5} (g) {x/x≤0 or x.2}

  1. Draw a graph to show the solution set of each of the following.
    (a) x-1<4 (b) x-1≤ 0 (c) 2x≤5 (d) 2x-1>7
    (e) 5-x≥1 (f) 1/3(x-1)<1
    3.Draw the graph of the following number lines below one another.
    (a) P = {x/x≥3, x∈R} (b) Q = {x/x≤-2, . Let A = {x/x is positive integer that is divisible by 2}. B = { x/x is a positive integer that is
    divisible by 3}. C = {x/x is appositive integer that is divisible by 5}. List the elements of the
    sets A, B, C. Find (a) A∩ (B∩C) and (b) (A∩B) ∩C. Show that A∩ (B∩C)= (A ∩ B) ∩ C
    6.Let A = {x/x is a positive integer less than 7} and B = {x/x is an integer land -3 ≤ x ≤4}.
    List the number of A and B, and then write down A ∪ B.
  2. Let A = {x/x is an integer, 0<x<6} and B = {x/x is a positive integer less than 13 and x is
    a multiple of 3}. List the number of A and B, and find A ∪ B.
  3. If P = {x/x2 + 2x -3} and Q = {x/x is an integer, -1 ≤ x ≤ 4}, find P ∩ Q and P ∪ Q.

Exercise 1.4

  1. Find the set B\A and A\B in the following.
    (a) A = { 1,2,3,4,5,6} , B = { 3,5} (b) A = { p,q,r,s} , B = { x,y,z}
    (c) A = { 1,2,3} , B = { 1,2,3,4}
Sort:  

Flagged for spam @steemflagrewards

Steem Flag Rewards mention comment has been approved! Thank you for reporting this abuse, @slobberchops.

  • spam
    You are repetitively posting the same content or recyling contents after a period of time. This post was submitted via our Discord Community channel. Check us out on the following link!
    SFR Discord

Congratulations @gyika! You received a personal award!

Happy Birthday! - You are on the Steem blockchain for 1 year!

You can view your badges on your Steem Board and compare to others on the Steem Ranking

Vote for @Steemitboard as a witness to get one more award and increased upvotes!

Coin Marketplace

STEEM 0.25
TRX 0.19
JST 0.037
BTC 93575.21
ETH 3330.28
USDT 1.00
SBD 3.89