Protein disorder–order interplay to guide the growth of hierarchical mineralized structures
A major goal in materials science is to develop bioinspired functional materials based on the precise control of molecular building blocks across length scales. Here we report a protein-mediated mineralization process that takes advantage of disorder–order interplay using elastin-like recombinamers to program organic–inorganic interactions into hierarchically ordered mineralized structures.
Introduction:
Nature is rich with examples of sophisticated materials displaying outstanding properties that emerge from their specific hierarchical structure1. Materials such as nacre, bone, and dental enamel possess distinct structural organization at different length scales, which enhance their bulk material properties and functionality.
The material exhibits high stiffness, hardness, and acid resistance, and can be fabricated as fully mineralized membranes or coatings over uneven surfaces including native tissues.