Pythonic Tutorial 17-18

in #datascience5 years ago

Pythonic on GitHub
Pythonic Tutorial Part 1-6
Pythonic Tutorial Part 7-11
Pythonic Tutorial Part 12-16

17. Support Vector Machine



SVM element in the element bar



Support Vector Machine

The Support Vector Machine element let’s you do a binary classification of the input data. The input must be a tuple of sample data and (binary) features ([0,1,1, 0, …]). Based on the selected ratio, the data is broken up into training and evaluation data. The output of this element is a contingency table.

To improve the prediction, the input data should be centered and/or scaled.

You can define a file path (absolute or relative to $HOME) where the resulting model is saved (it’s a pickled Scikit Learn SVC).

Scikit Learn Support Vector Machine

18. Support Vector Machine Prediction



SVM Prediction element in the element bar



Support Vector Machine Prediction

This element creates a prediction based on the input data and a model. You can specify the absolute or relative (to $HOME) file path to the model. If the input data is a list, you can activate that only the last value within this list gets predicted. This will reduce the CPU utilization if you want to pass in OHLC data regularly.

The output of this element is a Python list of
binary classification ([0, 0, 1, 0, 1, 1] — with just one element when Predict only last value is activated.)

Sort:  

Congratulations @avenwedde! You received a personal award!

Happy Birthday! - You are on the Steem blockchain for 1 year!

You can view your badges on your Steem Board and compare to others on the Steem Ranking

Do not miss the last post from @steemitboard:

SteemitBoard Ranking update - A better rich list comparator
Vote for @Steemitboard as a witness to get one more award and increased upvotes!

Coin Marketplace

STEEM 0.15
TRX 0.16
JST 0.028
BTC 67814.21
ETH 2401.94
USDT 1.00
SBD 2.34