Tutorial: Making Road Traffic Counting App based on Computer Vision and OpenCV

Today we will learn how to count road traffic based on computer vision and without heavy deep learning algorithms. 
For this tutorial, we will use only Python and OpenCV with the pretty simple idea of motion detection with help of background subtraction algorithm.All code you can find here

Here is our plan:

  1. Understand the main idea of background subtraction algorithms that used for foreground detection.
  2. OpenCV image filters.
  3. Object detection by contours.
  4. Building processing pipeline for further data manipulation.

And this is result: https://www.youtube.com/watch?v=_o5iLbRHKao

Background subtraction algorithms

There are many different algorithms for background subtraction, but the main idea of them is very simple. 

Let’s assume that you have a video of your room, and on some of the frames of this video there is no humans & pets, so basically it’s static, let’s call it background_layer. So to get objects that are moving on the video we just need to:

foreground_objects = current_frame - background_layer

But in some cases, we cant get static frame because lighting can change, or some objects will be moved by someone, or always exist movement, etc. In such cases we are saving some number of frames and trying to figure out which of the pixels are the same for most of them, then this pixels becoming part of background_layer. Difference generally in how we get this background_layer and additional filtering that we use to make selection more accurate.

In this lesson, we will use MOG algorithm for background subtraction and after processing, it looks like this:

Original frame on the left, Subtracted foreground with MOG(with shadows detecting) on the right.

As you can see there is some noise on the foreground mask which we will try to remove with some standard filtering technic.

Right now our code looks like this: https://gist.github.com/creotiv/f01ec1a4b7b1d88cad43c36be8fccc96

import os
import logging
import logging.handlers
import random

import numpy as np
import skvideo.io
import cv2
import matplotlib.pyplot as plt

import utils
# without this some strange errors happen
cv2.ocl.setUseOpenCL(False)
random.seed(123)

# ============================================================================
IMAGE_DIR = "./out"
VIDEO_SOURCE = "input.mp4"
SHAPE = (720, 1280)  # HxW
# ============================================================================


def train_bg_subtractor(inst, cap, num=500):
   '''
       BG substractor need process some amount of frames to start giving result
   '''
   print ('Training BG Subtractor...')
   i = 0
   for frame in cap:
       inst.apply(frame, None, 0.001)
       i += 1
       if i >= num:
           return cap


def main():
   log = logging.getLogger("main")

   # creting MOG bg subtractor with 500 frames in cache
   # and shadow detction
   bg_subtractor = cv2.createBackgroundSubtractorMOG2(
       history=500, detectShadows=True)

   # Set up image source
   # You can use also CV2, for some reason it not working for me
   cap = skvideo.io.vreader(VIDEO_SOURCE)

   # skipping 500 frames to train bg subtractor
   train_bg_subtractor(bg_subtractor, cap, num=500)

   frame_number = -1
   for frame in cap:
       if not frame.any():
           log.error("Frame capture failed, stopping...")
           break

       frame_number += 1

       utils.save_frame(frame, "./out/frame_%04d.png" % frame_number)

       fg_mask = bg_subtractor.apply(frame, None, 0.001)
       
       utils.save_frame(frame, "./out/fg_mask_%04d.png" % frame_number)

# ============================================================================

if __name__ == "__main__":
   log = utils.init_logging()

   if not os.path.exists(IMAGE_DIR):
       log.debug("Creating image directory `%s`...", IMAGE_DIR)
       os.makedirs(IMAGE_DIR)

   main()

Filtering

For our case we will need this filters: Threshold, Erode, Dilate, Opening, Closing. Please go by links and read about each of them and look how they work (to not make copy/paste)

So now we will use them to remove some noise on foreground mask.
First, we will use Closing to remove gaps in areas, then Opening to remove 1–2 px points, and after that dilation to make object bolder.

Code: https://gist.github.com/creotiv/cd0ca7ed33739ac690f5e71ee9383799#file-filter_mask-py

def filter_mask(img):

   kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2, 2))

   # Fill any small holes
   closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)
   # Remove noise
   opening = cv2.morphologyEx(closing, cv2.MORPH_OPEN, kernel)

   # Dilate to merge adjacent blobs
   dilation = cv2.dilate(opening, kernel, iterations=2)

   # threshold
   th = dilation[dilation < 240] = 0

   return th

And our foreground will look like this: 

Object detection by contours

For this purpose we will use the standard cv2.findContours method with params:

cv2.CV_RETR_EXTERNAL — get only outer contours.

cv2.CV_CHAIN_APPROX_TC89_L1 - use Teh-Chin chain approximation algorithm (faster)

Code: https://gist.github.com/creotiv/cf6979d7cb4ae7f78200cc815b9ef38d#file-detect_vehicles-py

def get_centroid(x, y, w, h):
   x1 = int(w / 2)
   y1 = int(h / 2)

   cx = x + x1
   cy = y + y1

   return (cx, cy)

def detect_vehicles(fg_mask, min_contour_width=35, min_contour_height=35):

   matches = []

   # finding external contours
   im, contours, hierarchy = cv2.findContours(
       fg_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_L1)

   # filtering by with, height
   for (i, contour) in enumerate(contours):
       (x, y, w, h) = cv2.boundingRect(contour)
       contour_valid = (w >= min_contour_width) and (
           h >= min_contour_height)

       if not contour_valid:
           continue
       
       # getting center of the bounding box
       centroid = get_centroid(x, y, w, h)

       matches.append(((x, y, w, h), centroid))

   return matches

On the exit, we add some filtering by height, width and add centroid.
Pretty simple, yeah?

Building processing pipeline

You must understand that in ML and CV there is no one magic algorithm that making altogether, even if we imagine that such algorithm exists, we still wouldn’t use it because it would be not effective at scale. For example a few years ago Netflix created competition with the prize 3 million dollars for the best movie recommendation algorithm. And one of the team created such, problem was that it just couldn’t work at scale and thus was useless for the company. But still, Netflix paid 1 million to them :)

So now we will build simple processing pipeline, it not for scale just for convenient but the idea the same.

Code: https://gist.github.com/creotiv/6db4c523ae7c64554c3d08ff5edb8e79

class PipelineRunner(object):
   '''
       Very simple pipline.

       Just run passed processors in order with passing context from one to
       another.

       You can also set log level for processors.
   '''

   def __init__(self, pipeline=None, log_level=logging.DEBUG):
       self.pipeline = pipeline or []
       self.context = {}
       self.log = logging.getLogger(self.__class__.__name__)
       self.log.setLevel(log_level)
       self.log_level = log_level
       self.set_log_level()

   def set_context(self, data):
       self.context = data

   def add(self, processor):
       if not isinstance(processor, PipelineProcessor):
           raise Exception(
               'Processor should be an isinstance of PipelineProcessor.')
       processor.log.setLevel(self.log_level)
       self.pipeline.append(processor)

   def remove(self, name):
       for i, p in enumerate(self.pipeline):
           if p.__class__.__name__ == name:
               del self.pipeline[i]
               return True
       return False

   def set_log_level(self):
       for p in self.pipeline:
           p.log.setLevel(self.log_level)

   def run(self):
       for p in self.pipeline:
           self.context = p(self.context)

       self.log.debug("Frame #%d processed.", self.context['frame_number'])

       return self.context


class PipelineProcessor(object):
   '''
       Base class for processors.
   '''

   def __init__(self):
       self.log = logging.getLogger(self.__class__.__name__)

As input constructor will take a list of processors that will be run in order. Each processor making part of the job. So let’s create contour detection processor.

Code: https://gist.github.com/creotiv/75a84e9a3f634c0f5c399bc495137075

class ContourDetection(PipelineProcessor):
   '''
       Detecting moving objects.

       Purpose of this processor is to subtrac background, get moving objects
       and detect them with a cv2.findContours method, and then filter off-by
       width and height.

       bg_subtractor - background subtractor isinstance.
       min_contour_width - min bounding rectangle width.
       min_contour_height - min bounding rectangle height.
       save_image - if True will save detected objects mask to file.
       image_dir - where to save images(must exist).        
   '''

   def __init__(self, bg_subtractor, min_contour_width=35, min_contour_height=35, save_image=False, image_dir='images'):
       super(ContourDetection, self).__init__()

       self.bg_subtractor = bg_subtractor
       self.min_contour_width = min_contour_width
       self.min_contour_height = min_contour_height
       self.save_image = save_image
       self.image_dir = image_dir

   def filter_mask(self, img, a=None):
       '''
           This filters are hand-picked just based on visual tests
       '''

       kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2, 2))

       # Fill any small holes
       closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)
       # Remove noise
       opening = cv2.morphologyEx(closing, cv2.MORPH_OPEN, kernel)

       # Dilate to merge adjacent blobs
       dilation = cv2.dilate(opening, kernel, iterations=2)

       return dilation

   def detect_vehicles(self, fg_mask, context):

       matches = []

       # finding external contours
       im2, contours, hierarchy = cv2.findContours(
           fg_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_L1)

       for (i, contour) in enumerate(contours):
           (x, y, w, h) = cv2.boundingRect(contour)
           contour_valid = (w >= self.min_contour_width) and (
               h >= self.min_contour_height)

           if not contour_valid:
               continue

           centroid = utils.get_centroid(x, y, w, h)

           matches.append(((x, y, w, h), centroid))

       return matches

   def __call__(self, context):
       frame = context['frame'].copy()
       frame_number = context['frame_number']

       fg_mask = self.bg_subtractor.apply(frame, None, 0.001)
       # just thresholding values
       fg_mask[fg_mask < 240] = 0
       fg_mask = self.filter_mask(fg_mask, frame_number)

       if self.save_image:
           utils.save_frame(fg_mask, self.image_dir +
                            "/mask_%04d.png" % frame_number, flip=False)

       context['objects'] = self.detect_vehicles(fg_mask, context)
       context['fg_mask'] = fg_mask

       return contex

So just merge together out bg subtraction, filtering and detection parts.
Now let’s create a processor that will link detected objects on different frames and will create paths, and also will count vehicles that got to the exit zone.

Code: https://gist.github.com/creotiv/da7fca1b237619a756133a1fa816350e

   '''
       Counting vehicles that entered in exit zone.

       Purpose of this class based on detected object and local cache create
       objects pathes and count that entered in exit zone defined by exit masks.

       exit_masks - list of the exit masks.
       path_size - max number of points in a path.
       max_dst - max distance between two points.
   '''

   def __init__(self, exit_masks=[], path_size=10, max_dst=30, x_weight=1.0, y_weight=1.0):
       super(VehicleCounter, self).__init__()

       self.exit_masks = exit_masks

       self.vehicle_count = 0
       self.path_size = path_size
       self.pathes = []
       self.max_dst = max_dst
       self.x_weight = x_weight
       self.y_weight = y_weight

   def check_exit(self, point):
       for exit_mask in self.exit_masks:
           try:
               if exit_mask[point[1]][point[0]] == 255:
                   return True
           except:
               return True
       return False

   def __call__(self, context):
       objects = context['objects']
       context['exit_masks'] = self.exit_masks
       context['pathes'] = self.pathes
       context['vehicle_count'] = self.vehicle_count
       if not objects:
           return context

       points = np.array(objects)[:, 0:2]
       points = points.tolist()

       # add new points if pathes is empty
       if not self.pathes:
           for match in points:
               self.pathes.append([match])

       else:
           # link new points with old pathes based on minimum distance between
           # points
           new_pathes = []

           for path in self.pathes:
               _min = 999999
               _match = None
               for p in points:
                   if len(path) == 1:
                       # distance from last point to current
                       d = utils.distance(p[0], path[-1][0])
                   else:
                       # based on 2 prev points predict next point and calculate
                       # distance from predicted next point to current
                       xn = 2 * path[-1][0][0] - path[-2][0][0]
                       yn = 2 * path[-1][0][1] - path[-2][0][1]
                       d = utils.distance(
                           p[0], (xn, yn),
                           x_weight=self.x_weight,
                           y_weight=self.y_weight
                       )

                   if d < _min:
                       _min = d
                       _match = p

               if _match and _min <= self.max_dst:
                   points.remove(_match)
                   path.append(_match)
                   new_pathes.append(path)

               # do not drop path if current frame has no matches
               if _match is None:
                   new_pathes.append(path)

           self.pathes = new_pathes

           # add new pathes
           if len(points):
               for p in points:
                   # do not add points that already should be counted
                   if self.check_exit(p[1]):
                       continue
                   self.pathes.append([p])

       # save only last N points in path
       for i, _ in enumerate(self.pathes):
           self.pathes[i] = self.pathes[i][self.path_size * -1:]

       # count vehicles and drop counted pathes:
       new_pathes = []
       for i, path in enumerate(self.pathes):
           d = path[-2:]

           if (
               # need at list two points to count
               len(d) >= 2 and
               # prev point not in exit zone
               not self.check_exit(d[0][1]) and
               # current point in exit zone
               self.check_exit(d[1][1]) and
               # path len is bigger then min
               self.path_size <= len(path)
           ):
               self.vehicle_count += 1
           else:
               # prevent linking with path that already in exit zone
               add = True
               for p in path:
                   if self.check_exit(p[1]):
                       add = False
                       break
               if add:
                   new_pathes.append(path)

       self.pathes = new_pathes

       context['pathes'] = self.pathes
       context['objects'] = objects
       context['vehicle_count'] = self.vehicle_count

       self.log.debug('#VEHICLES FOUND: %s' % self.vehicle_count)

       return context

This class a bit complicated so let’s walk through it by parts.

This green mask on the image is exit zone, is where we counting our vehicles. For example, we will count only paths that have length more than 3 points(to remove some noise) and the 4th in the green zone.
We use masks cause it’s many operation effective and simpler than using vector algorithms. Just use “binary and” operation to check that point in the area, and that’s all. And here is how we set it:

EXIT_PTS = np.array([    [[732, 720], [732, 590], [1280, 500], [1280, 720]],    [[0, 400], [645, 400], [645, 0], [0, 0]]]) 

base = np.zeros(SHAPE + (3,), dtype='uint8')
exit_mask = cv2.fillPoly(base, EXIT_PTS, (255, 255, 255))[:, :, 0]

Now let’s link points in paths

new_pathes = []

for path in self.pathes:
   _min = 999999
   _match = None
   for p in points:
       if len(path) == 1:
           # distance from last point to current
           d = utils.distance(p[0], path[-1][0])
       else:
           # based on 2 prev points predict next point and calculate
           # distance from predicted next point to current
           xn = 2 * path[-1][0][0] - path[-2][0][0]
           yn = 2 * path[-1][0][1] - path[-2][0][1]
           d = utils.distance(
               p[0], (xn, yn),
               x_weight=self.x_weight,
               y_weight=self.y_weight
           )

       if d < _min:
           _min = d
           _match = p

   if _match and _min <= self.max_dst:
       points.remove(_match)
       path.append(_match)
       new_pathes.append(path)

   # do not drop path if current frame has no matches
   if _match is None:
       new_pathes.append(path)

self.pathes = new_pathes

# add new pathes
if len(points):
   for p in points:
       # do not add points that already should be counted
       if self.check_exit(p[1]):
           continue
       self.pathes.append([p])

# save only last N points in path
for i, _ in enumerate(self.pathes):
   self.pathes[i] = self.pathes[i][self.path_size * -1:]

On first frame. we just add all points as new paths.

Next if len(path) == 1, for each path in the cache we are trying to find the point(centroid) from newly detected objects which will have the smallest Euclidean distance to the last point of the path.

If len(path) > 1, then with the last two points in the path we are predicting new point on the same line, and finding min distance between it and the current point.

The point with minimal distance added to the end of the current path and removed from the list.

If some points left after this we add them as new paths.

And also we limit the number of points in the path.

# count vehicles and drop counted pathes:
new_pathes = []
for i, path in enumerate(self.pathes):
   d = path[-2:]

   if (
       # need at list two points to count
       len(d) >= 2 and
       # prev point not in exit zone
       not self.check_exit(d[0][1]) and
       # current point in exit zone
       self.check_exit(d[1][1]) and
       # path len is bigger then min
       self.path_size <= len(path)
   ):
       self.vehicle_count += 1
   else:
       # prevent linking with path that already in exit zone
       add = True
       for p in path:
           if self.check_exit(p[1]):
               add = False
               break
       if add:
           new_pathes.append(path)

self.pathes = new_pathes

context['pathes'] = self.pathes
context['objects'] = objects
context['vehicle_count'] = self.vehicle_count

self.log.debug('#VEHICLES FOUND: %s' % self.vehicle_count)

return context

Now we will try to count vehicles that entering in the exit zone. To do this we just take 2 last points in the path and checking that last of them in exit zone, and previous not, and also checking that len(path) should be bigger than limit.

The part after else is preventing of back-linking new points to the points in exit zone.

And the last two processor is CSV writer to create report CSV file, and visualization for debugging and nice pictures.

class CsvWriter(PipelineProcessor):

   def __init__(self, path, name, start_time=0, fps=15):
       super(CsvWriter, self).__init__()

       self.fp = open(os.path.join(path, name), 'w')
       self.writer = csv.DictWriter(self.fp, fieldnames=['time', 'vehicles'])
       self.writer.writeheader()
       self.start_time = start_time
       self.fps = fps
       self.path = path
       self.name = name
       self.prev = None

   def __call__(self, context):
       frame_number = context['frame_number']
       count = _count = context['vehicle_count']

       if self.prev:
           _count = count - self.prev

       time = ((self.start_time + int(frame_number / self.fps)) * 100
               + int(100.0 / self.fps) * (frame_number % self.fps))
       self.writer.writerow({'time': time, 'vehicles': _count})
       self.prev = count

       return context


class Visualizer(PipelineProcessor):

   def __init__(self, save_image=True, image_dir='images'):
       super(Visualizer, self).__init__()

       self.save_image = save_image
       self.image_dir = image_dir

   def check_exit(self, point, exit_masks=[]):
       for exit_mask in exit_masks:
           if exit_mask[point[1]][point[0]] == 255:
               return True
       return False

   def draw_pathes(self, img, pathes):
       if not img.any():
           return

       for i, path in enumerate(pathes):
           path = np.array(path)[:, 1].tolist()
           for point in path:
               cv2.circle(img, point, 2, CAR_COLOURS[0], -1)
               cv2.polylines(img, [np.int32(path)], False, CAR_COLOURS[0], 1)

       return img

   def draw_boxes(self, img, pathes, exit_masks=[]):
       for (i, match) in enumerate(pathes):

           contour, centroid = match[-1][:2]
           if self.check_exit(centroid, exit_masks):
               continue

           x, y, w, h = contour

           cv2.rectangle(img, (x, y), (x + w - 1, y + h - 1),
                         BOUNDING_BOX_COLOUR, 1)
           cv2.circle(img, centroid, 2, CENTROID_COLOUR, -1)

       return img

   def draw_ui(self, img, vehicle_count, exit_masks=[]):

       # this just add green mask with opacity to the image
       for exit_mask in exit_masks:
           _img = np.zeros(img.shape, img.dtype)
           _img[:, :] = EXIT_COLOR
           mask = cv2.bitwise_and(_img, _img, mask=exit_mask)
           cv2.addWeighted(mask, 1, img, 1, 0, img)

       # drawing top block with counts
       cv2.rectangle(img, (0, 0), (img.shape[1], 50), (0, 0, 0), cv2.FILLED)
       cv2.putText(img, ("Vehicles passed: {total} ".format(total=vehicle_count)), (30, 30),
                   cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 1)
       return img

   def __call__(self, context):
       frame = context['frame'].copy()
       frame_number = context['frame_number']
       pathes = context['pathes']
       exit_masks = context['exit_masks']
       vehicle_count = context['vehicle_count']

       frame = self.draw_ui(frame, vehicle_count, exit_masks)
       frame = self.draw_pathes(frame, pathes)
       frame = self.draw_boxes(frame, pathes, exit_masks)

       utils.save_frame(frame, self.image_dir +
                        "/processed_%04d.png" % frame_number)

       return context

CSV writer is saving data by time, cause we need it for further analytics. So i use this formula to add additional frame timing to the unixtimestamp:

time = ((self.start_time + int(frame_number / self.fps)) * 100 

       + int(100.0 / self.fps) * (frame_number % self.fps))

so with start time=1 000 000 000 and fps=10 i will get results like this
frame 1 = 1 000 000 000 010
frame 1 = 1 000 000 000 020
…Then after you get full csv report you can aggregate this data as you want.

Full code of this project

Conclusion

So as you see it was not so hard as many people think.

But if you run the script you will see that this solution is not ideal, and having a problem with foreground objects overlapping, also it doesn’t have vehicles classification by types(that you will definitely need for real analytics). But still, with good camera position(above the road), it gives pretty good accuracy. And that tells us that even small & simple algorithms used in a right way can give good results.

So what we can do to fix current issues?

One way is to try adding some additional filtration trying to separate objects for better detection. Another is to use more complex algorithms like deep convolution networks (about which i will tell in the next article)

Sort:  

Congratulations @andrey.nikishaev! You have completed some achievement on Steemit and have been rewarded with new badge(s) :

You made your First Vote
You made your First Comment

Click on any badge to view your own Board of Honor on SteemitBoard.
For more information about SteemitBoard, click here

If you no longer want to receive notifications, reply to this comment with the word STOP

By upvoting this notification, you can help all Steemit users. Learn how here!

Awesome Tutorial!! If you're interested in how AI works under the hood you are welcome to check out our series. A lot of what you posted works thanks to Neural Networks. Let us know what you think :)

Nice too bad there isn't code syntax highlighting on steemit,
I upvoted this !

Coin Marketplace

STEEM 0.21
TRX 0.25
JST 0.038
BTC 95583.13
ETH 3350.54
USDT 1.00
SBD 3.09