The Human Operating System Gets an Overhaul
The boldest science project currently in the works? It’s not Elon Musk’s race to Mars or the the next iteration of the Large Hadron Collider. Instead it’s something many people haven’t have heard of.
Think of it this way — right now, around the globe, synthetic biologists are building novel organisms from scratch for an array of purposes in medicine, energy, agriculture, and other fields. The project I’m talking about, Human Genome Project-write (or GP-write, as the project is known), aims to use these same tools to build a much more familiar organism: a human cell, complete with all the DNA required to produce more human cells. Mastery of this technique could wipe out diseases and bring about other applications that we can’t yet imagine. It’s the ultimate engineering blueprint for life.
What follows is a lengthy conversation with synthetic biologist Andrew Hessel — and it’s lengthy for a reason. Hessel is the person who kickstarted the GP-write project, turning a controversial idea—in 2016, fellow scientists questioned GP-write’s aims and faulted what they saw as excessive secrecy—into a global movement with almost 1,000 people involved. This is the first time he’s told the story behind this moonshot to re-engineer human life.
This interview has been edited for clarity.
Before we dive into the nitty-gritty of the GP-write project, what’s the big practical benefit? Why should people care?
This is a project that will touch every human life — literally. If we’re successful, what it will really do is unlock the power of biology. It gives us the ability to heal disease, repair ecosystems and — because it gives us the ability to design and grow resources from scratch — the ability to sustain humanity in an environmentally friendly way.
Where did GP-write come from, and why are you one of the people to lead it?
I’m a little difficult to define, but the role that I seem to play in a lot of projects is a catalyst. I help to bring people together and explore new ideas and see if we can’t make something happen. I love to champion certain technologies in their early phase.
Training-wise, I’m a microbiologist and cell biologist, although it’s been years since I’ve really worked at the bench. I was involved in genome-mapping projects in bacterial genomes earlier in my career, and then I moved over to bio-pharma with a major pharmaceutical company [Amgen]. Spent seven years with them learning the ins and outs of drug development and the research behind that.